Interactions between brain-derived neurotrophic factor and the TRKB receptor. Identification of two ligand binding domains in soluble TRKB by affinity separation and chemical cross-linking.
نویسندگان
چکیده
The extracellular domain of the human neurotrophin TRKB receptor expressed in Chinese hamster ovary cells is a highly glycosylated protein, possessing binding ability for brain-derived neurotrophic factor (BDNF). Two distinct ligand binding domains of TRKB were isolated from proteolytic digests of the receptor by affinity separation on immobilized BDNF. One of these domains consists of amino acid residues 103-181 and contains both the third leucine-rich motif and the second cysteine cluster domain. The second domain is close to the second immunoglobulin-like domain (amino acid residues 342-394). Each of these two domains can bind BDNF independently. Disulfide linkages present in the first domain are necessary for BDNF binding, probably because of preservation of the native conformation. To study the second domain in greater detail, a truncated form of TRKB containing the second immunoglobulin-like domain (residues 248-398) was expressed in Escherichia coli. This domain was cross-linked to BDNF through a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling reaction. Several synthetic peptides corresponding to amino acid residues 343-379 were able to bind immobilized BDNF. Amino acid substitution and cross-linking analysis indicated that amino acids Phe347, Asp354, and Tyr361 are intimately involved in BDNF binding. These results, obtained from a variety of experimental techniques, highlight the importance of two distinct regions of the extracellular domain of the TRKB receptor in binding BDNF.
منابع مشابه
P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملEffect of Endurance Training on Brain Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase B (Trkb) Level in Hippocampus of Ischemic Induced Male Rats
Introduction: Brain derived neurotrophic factor (BDNF) have neuroprotective effect through binding with tyrosine kinase B (TrkB). Thus the Aim of the present study was to investigate the effects of eight weeks endurance training on BDNF and TrkB levels in the hippocampus of ischemic induced male rats. Methods: 40 Male wistar rats (12 weeks old and 228.19±21.18g) were divided into four groups, i...
متن کاملThe Effect of Pre-Conditioning Endurance Training on Neurogenic and Anti-Neurogenic Factor in Hippocampus of Male Rats Following Ischemic Reperfusion
Introduction: Binding of mature brain derived neurotrophic factor (BDNF) to tyrosine kinase B (TrkB) receptor leads to cell survival, while proBDNF binding to p75 receptor leads to cell death. Thus the aim of the present study was to investigate the effects of eight weeks pre-conditioning endurance training on BDNF, TrkB, proBDNF and p75 levels in the hippocampus male rats following ischemic re...
متن کاملBrain-derived neurotrophic factor receptor TrkB exists as a preformed dimer in living cells
BACKGROUND Neurotrophins (NTs) and their receptors play crucial roles in the development, functions and maintenance of nervous systems. It is widely believed that NT-induced dimerization of the receptors initiates the transmembrane signaling. However, it is still controversial whether the receptor molecule has a monomeric or dimeric structure on the cell surface before its ligand binding. FIN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 40 شماره
صفحات -
تاریخ انتشار 1997